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Quantum statistics control with a plasmonic nanocavity: Multimode-enhanced interferences
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Using a scattered field interference mechanism, we theoretically demonstrate the quantum statistics control
with a hybrid system comprised of a quantum emitter and a plasmonic multimode nanocavity. Enhanced through
multimode interactions, destructive interference between scattered fields from the emitter and nanocavity is able
to change the photon statistics from bunching to antibunching. This transition cannot be explained by treating
the plasmonic nanocavity in the dipole approximation. In some specific regions, an effective single-mode model,
which is equivalent to the multimode model, is derived by simply shifting the transition frequency and modifying
decay rates of the nearby quantum emitter. Superior to the closed optical microcavity, this hybrid system can be
used to control the photon statistics without the need for strong coupling, and may find applications in nanoscale
refractive index sensing.
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I. INTRODUCTION

The coherent control of quantum statistics forms an
important part of quantum-optical spectroscopy [1–5]. Various
schemes based on the cavity quantum electrodynamics
(CQED) system have been proposed to tune the photon
statistics [6–12], such as antibunched and bunched output
fields generated with photon blockade and photon-induced
tunneling effects [6–11], and all-optical control of quantum
statistics using cavity electromagnetically induced trans-
parency [12]. However, most of these schemes rely on
strong coupling, which raises certain difficulties for practical
application. Furthermore, conventional optical cavities are
usually micrometers in size, which is not favorable for scalable
and ultracompact integration.

A good candidate to overcome these limitations is the metal-
lic nanocavity, where collective electron oscillations enable the
enhancement and confinement of light at the nanoscale [13,14].
The hybridization of a quantum emitter (QE) and a metallic
nanoparticle (MNP) can yield functionalities that exceed
those of the individual subunits [15,16], including Fano
resonance [17] and its effect on quantum statistics [18], tailored
spontaneous emission [19,20], spaser [21–23], enhanced up-
conversion of entangled photons [24], cloaking [25], and the
generation of squeezed states [26]. Generally, the MNP can
be viewed as an open nanocavity. This openness leads to
interference between scattered fields from QE and MNP.

Here, with a plasmonic multimode nanocavity, we describe
using this scattered field interference to control the photon
statistics. Besides having an ultrasmall mode volume, there
are several advantages to using this cavity, one being high
openness. The incident light then couples to both the QE
transition and MNP modes and, therefore, both scatter the
incident light. Subsequent constructive or destructive inter-
ference between the scattered fields leads to various photon
statistics. Another advantage is that the MNP is a multimode
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cavity with spectral overlap among its modes. If the QE and
MNP are several nanometers apart, multimode effects must
be taken into account. Beyond the dipole approximation [18],
the coupling between QE and higher modes further enriches
the properties of the photon statistics. Third, the multimode
interactions and openness-induced photon interferences can
boost the tunability of photon statistics even if the coupling of
QE and MNP is in the bad-cavity limit.

Without loss of generality, we consider the simplest QE-
MNP system composed of a two-level QE and spherical
MNP to capture the main physics. The theoretical model
can also be applied to the more complex-shaped MNP. As
for the more complex-shaped MNP, such as nanorod or
bipyramid, they also possess the dipole mode, quadruple
mode, and so on. Their interactions with nearby QE can
also be described by the following theoretical model. To
obtain the corresponding system response parameters (e.g.,
resonance frequency and coupling constant), electromagnetic
simulations are needed [27,28]. To give an exact description
of this system, we develop a full quantum model where
the MNP is treated as a multimode cavity. It is shown that
the dipole approximation [18] fails to describe the quantum
statistical properties of this hybrid system when QE is close
to MNP. In some specific parameter regions, we deduce
an effective single-mode model, which greatly simplifies
the numerical calculations and fits well with the multimode
model. This effective model provides a clear physical picture,
where the role of the higher modes is to modify the QE
transition frequency and decay rate only. By changing the
frequency of the incident light, the distance between the QE
and MNP, and the background permittivity, both bunched and
antibunched fields can be obtained through the interference
of scattered lights. The hybrid QE-MNP system thus provides
a unique method to manipulate the quantum statistics at the
nanoscale.

This paper is organized as follows. In Sec. II, we set up
the quantum multimode model of the hybrid system. The
roles of multimode interactions and field interference on the
photon statistics are analyzed in Sec. III. To obtain a clearer
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physical picture of the multimode interactions, we derive in
Sec. IV an effective model by adiabatically eliminating the
higher-mode operators of MNP. The photon statistics control
by system parameters is explored in Sec. V. Finally, we present
a discussion and summary in Sec. VI.

II. QUANTUM MULTIMODE MODEL

The system under study [Fig. 1(a)] consists of a two-level
QE and spherical MNP with radius rm and dielectric constant
εm. The QE and MNP are separated by distance R and
embedded in a dielectric host with permittivity εb. The whole
system is driven by an applied field E0(e−iωt + eiωt ). The MNP
is able to support localized electromagnetic modes, known as
surface plasmon resonances [14]. For a spherical MNP much
smaller than the wavelength of incident light, the resonance
frequency ωn of its nth mode is determined by Re[εm(ωn)] =
− n+1

n
εb (n = 1,2,3, . . .) [29]. From the experimental data [30]

for εm, the modes of a silver MNP in vacuum (εb = 1) overlap
with each other [Fig. 1(b), in which only the first five modes
are shown]. The dipole mode (n = 1) can be excited by an
incident plane wave and can radiate to the far field. If the MNP
is small enough, the higher modes [such as quadruple (n = 2)
and octuple (n = 3) modes] cannot couple to the incident light
because of their vanishing dipole moments [31,32], but they
can be excited by nearby dipoles [31]. If distance R is small,
we must consider the coupling of QE with the higher modes
of MNP due to the mode overlap.

In a frame rotating at the incident light frequency ω,
the interaction Hamiltonian of the hybrid system within the

 

 
 

 
 

 

MNPQE(a)

 

FIG. 1. (Color online) (a) Schematic of the hybrid system com-
posed of a two-level QE and a spherical MNP. The whole system
is driven by a plane wave. (b) Energy absorption of a silver MNP
in vacuum contributed by its dipole mode (n = 1), quadruple mode
(n = 2), and octuple mode (n = 3), etc. The vertical dashed lines
show the QE frequencies discussed in the main text, including
ωx = 3.54 eV (case I) and ωx = 3.42 eV (case II). (c) The coupling
rate gn (curves with solid symbol) and decay rate γn (curves with
hollow symbol) with respect to distance R for the nth (n = 1,2,3)
modes of MNP.

rotating-wave approximation reads (� = 1)

H = (ωx − ω)σ †σ +
N∑

n=1

(ωn − ω)a†
nan

−
N∑

n=1

gn(anσ
† + a†

nσ ) − E0χ (a1 + a
†
1) − μE0(σ + σ †).

(1)

The first two terms are the free Hamiltonian for QE and MNP,
with an being the annihilation operator of the nth mode of
MNP; σ = |g〉〈e| is the lowering operator of QE, with |g〉
(|e〉) being the ground (excited) state; and ωx and ωn denote the
resonance frequency of the QE and nth mode of MNP, respec-
tively. For the system parameters discussed in the following,
15 modes (N = 15) have been taken into consideration, which
guarantee convergence and can represent the steady-state
results of N → ∞. The middle term describes the interaction

between QE and MNP, where gn = μ(n+1)
Rn+2

√
2n+1

n

ηnr
2n+1
m

4πε0
is the

coupling constant between the nth mode of MNP and QE, with
ηn = 1/ d

dω
Re[εm(ω)]|ω=ωn

and dipole moment μ of QE. The
coupling constant gn is obtained through a classical-quantum
correspondence approach. This is achieved by comparing the
classical electromagnetic results of MNP polarization fields
acting on QE, which are composed of the near field excited by
E0 and the feedback field from MNP, with the quantum results
〈E+

m〉 = ∑N
n=1

gn

μ
〈an〉. Details of the derivation are provided

in Appendix A. The last two terms, originating from the high
openness of the metallic nanocavity, represent the driving of
the QE and MNP dipole mode by the applied field, with
χ = εb

√
12πε0η1r3

m being the dipole moment of MNP (see
Appendix A). As a comparison, an incident light drives either
the cavity mode or the QE in a conventional CQED system. We
show below that by introducing the unique interference effects
caused by the high openness of the metallic nanocavity, the
multimode couplings between QE and MNP can improve the
performance on the control of photon statistics.

The dynamics of the system is given by the master equation

ρ̇ = i[ρ,H ] + γx

2
(2σρσ † − σ †σρ − ρσ †σ )

+
N∑

n=1

γn

2
(2anρa†

n − a†
nanρ − ρa†

nan), (2)

where γx and γn are the decay rates of the QE and nth mode
of the MNP, with γn = 2ηnIm[εm(ωn)] [21]. Although the
possibility of strong coupling between single QE and MNP
has been theoretically demonstrated [33], here we focus on the
bad-cavity limit, i.e., gn < γn [see Fig. 1(c) for the first three
modes]. This focus covers the general case for the hybrid
QE-MNP system and is easier to achieve experimentally.
The Hamiltonian [Eq. (1)] can also be extended to the
strong-coupling regime [28,34], where the reversible energy
exchange between QE and MNP takes place. Starting with the
master equation, we can solve the populations and higher-order
correlation functions for the steady state. For this purpose, one
needs to truncate the Fock basis of the MNP modes according
to both the driven strength E0 and the coupling strength gn. The
general coupled equations for the hybrid system are presented
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in Appendix B. The results of the calculations below are also
verified using the open-source software QuTiP [35,36].

III. ROLE OF MULTIMODE INTERACTIONS
AND FIELD INTERFERENCE

In the following, we calculate the second-order correlation
function g(2)(0) of the scattered light. Because of the high
openness of the nanocavity, both the MNP and QE scatter
incident light. Hence, the total polarization operator is P̂ =
χa1 + μσ [18]. Because their dipole moments vanish, the
higher modes cannot scatter the light into the far field, and
hence they are not included in the total polarization operator.
For this hybrid system, the scattered intensity is proportional
to I = 〈P̂ †P̂ 〉, while the second-order correlation function is
given by g(2)(0) = 〈(P̂ †)2(P̂ )2〉/I 2. The fields scattered from
QE and MNP interfere with each other, which can be used to
control the quantum statistics.

To gain a more physical understanding of the cavity-
openness-induced interference, g(2)(0) can be rewritten in the
following form:

g(2)(0) = χ4〈(a†
1)2a2

1

〉/
I 2 + 4χ2μ2〈a†

1a1σ
†σ 〉/I 2

+ 4χ3μRe〈a†
1a

2
1σ

†〉/I 2. (3)

The positive semidefiniteness of the (a†
1)2a2

1 and a
†
1a1σ

†σ
guarantees that the expectations in the first two terms of
g(2)(0) are always non-negative. However, the third term
in Eq. (3) can be positive or negative, which introduces

FIG. 2. (Color online) (a) Quantum statistics g(2)(0) of the scat-
tered field as a function of incident light frequency ω for case I
with ωx = 3.54 eV. Opposite quantum statistics characteristics are
found due to the multimode interactions. Here, N = 1 means that
we consider only the dipole mode, whereas N = 2 means that we
consider both the dipole and quadruple modes; likewise for N > 2. (b)
The sum of the first two terms (dash-dotted curves) and the third term
(dotted curves) in Eq. (3) for N = 1. (c) Same as (b), but for N = 2
(red) and N = 4 (cyan). For N > 1, the destructive interference
around the QE frequencies leads to antibunching statistics.

either constructive or destructive interference into the quantum
statistics. This particular interference mechanism derives from
the high openness of the plasmonic nanocavity.

We first illustrate the influence of the higher modes on
the quantum statistics of scattered fields. From here on, the
radius of the silver MNP is set to rm = 7 nm. The dipole
moment and decay rate of the QE in vacuum are set to
μ = 0.7 enm and γx = 50 μeV. The distance R is set to
12 nm, unless otherwise stated. A weak incident field with
Rabi frequency 
 = 2μE0 = 0.02 meV is considered. Two
typical QE transition frequencies, marked by two vertical lines
in Fig. 1(b), were studied. For case I, the QE frequency is set to
ωx = 3.54 eV, which lies between the dipole mode and other
higher modes frequencies, whereas for case II, the QE is red
detuned from the dipole mode with ωx = 3.42 eV. In Figs. 2(a)
and 3(a), g(2)(0) is plotted for cases I and II, respectively. The
photon statistics is reversed by the higher modes for case I
[Fig. 2(a)]. In other words, the photon statistics of the scattered
field is changed from bunching for N = 1 to antibunching
because of multimode interactions. For case II, compared with
the single-mode result, the multimode interactions shift the
positions and magnitudes of the maximum and minimum of
g(2)(0) [Fig. 3(a)]. In this case, by tuning the frequency of
incident light, the character of the quantum statistics can either
be bunching or antibunching.

In further analysis, the sum of the first two terms (dash-
dotted curves) and the third term (dotted curves) in Eq. (3) are
plotted separately in Figs. 2(b), 2(c), and 3(b). As already
mentioned, the third term of g(2)(0) can be positive or
negative for different frequencies, which yields constructive
or destructive interference of quantum statistics. Figures 2(b)
and 2(c) indicate that the statistical interferences between the

FIG. 3. (Color online) (a) Quantum statistics g(2)(0) as a function
of incident light frequency ω for case II with ωx = 3.42 eV. The shift
of the g(2)(0) curve induced by multimode interactions leads to a
wider range of adjustment for the quantum statistics. (b) The sum
of the first two terms (dash-dotted curves) and the third term (dotted
curves) in Eq. (3) for N = 1 (black), N = 2 (red), and N = 4 (cyan).
The interference of quantum statistics can be either constructive or
destructive around QE frequencies.
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scattered fields are mainly destructive around ω = ωx for case
I. The magnitudes for both the sum of the first two terms
and the third interference term decrease as N increases. In
particular, for N � 2, the two curves in Fig. 2(c) have nearly
the same magnitudes. However, the opposite sign of the third
interference term reverses the photon statistics and leads to the
antibunching effect. That is to say, the quantum statistics of
the scattered field can go from bunching to antibunching under
the destructive interference contributed by the multimode
interactions. For case II, the statistical interference can be
constructive or destructive [Fig. 3(b)]. The total effects of
the multimode interactions and field interference are to shift the
positions and magnitudes of the g(2)(0). Moreover, multimode
interactions lead to a wider range of adjustment for quantum
statistics than case I. For the cases that the QE is on resonance
with the frequency of the dipole mode or one of the higher
modes, poor tunability of the quantum statistics is found be-
cause only one of the modes of the MNP dominates the system.

The calculations above are based on the exact model
[Eq. (1)] and the general dynamical equations given in
Appendix B. This exact model reveals the role of multimode
interactions to some degree. However, from Figs. 2(a) and 3(a),
the steady-state results for g(2)(0) do not converge even if we
take four modes (N = 4) into account. It is difficult to consider
more than five or six modes because the corresponding density
matrix is exceedingly large. This problem is even more severe
for strong incident fields. To solve this problem, we derive in
the next section a simplified single-mode model for this hybrid
QE-MNP system.

IV. EFFECTIVE MODEL

By adiabatically eliminating the higher-mode operators
ai (i � 2) in Eq. (1), we develop an effective model which
transforms the multimode problem into a single-mode prob-
lem. The adiabatic elimination is valid if the ratio of the
coupling constants gn to |i(ωn − ωx) + (γn − γx)/2| is small.
This effective model not only greatly saves on computation
resources, but also helps to capture the physics clearly.

We start from the Heisenberg equations of motion for σ and
an:

σ̇ = −
[
i(ωx − ω) + γx

2

]
σ −

N∑
n=1

ignσzan − iμE0σz, (4)

ȧn = −
[
i(ωn − ω) + γn

2

]
an + ignσ + iE0χδn,1, (5)

where δn,1 is the Kronecker delta. After some formal inte-
grations and substitutions, an integral expression for an(t) is
obtained (see Appendix C). As an approximation, only the
first-order terms with respect to gn

i(ωn−ωx )+(γn−γx )/2 are retained.
After dropping the fast rotating and decay terms, we obtain a
simple approximation for an(t) (n � 2):

an(t) ≈ ign

i(ωn − ωx) + (γn − γx)/2
σ (t) (n � 2). (6)

Substituting Eq. (6) into Eq. (4), and combining the obtained
expression with the Heisenberg equation of a1, the effective

FIG. 4. (Color online) Comparison of g(2)(0) calculated from the
effective model (solid curves) and exact model (solid stars) for (a)
case I and (b) case II. Note the excellent match between the two
models.

Hamiltonian is derived as

Heff = (ωx,eff − ω)σ †σ + (ω1 − ω)a†
1a1 − g1(a1σ

† + a
†
1σ )

−E0χ (a1 + a
†
1) − μE0(σ + σ †), (7)

and the corresponding effective master equation becomes

ρ̇eff = i[ρeff,Heff]+ γx,eff

2
(2σρeffσ

†−σ †σρeff−ρeffσ
†σ )

+γ1

2
(2a1ρeffa

†
1 − a

†
1a1ρeff − ρeffa

†
1a1), (8)

where the effective resonant energy ωx,eff and decay rate γx,eff

of QE are modified as

ωx,eff = ωx −
N∑

n=2

αn(ωn − ωx),

γx,eff = γx +
N∑

n=2

αn(γn − γx), (9)

with αn = g2
n

(ωn−ωx )2+(γn−γx )2/4 . Equations (7)–(9) are the main
results of the effective model. More details of the above
derivations are given in Appendix C. From this effective
Hamiltonian, the role of the higher modes is only to shift
the QE resonance frequency and modify the decay rate, which
enables the photon statistics to be controlled.

To verify the correctness of the effective model, compar-
isons of g(2)(0) between the exact model (solid stars) and the
effective model (solid curves) were made (Fig. 4). Excellent
matches are found between these two models for both cases.
Because the spectral overlap among the modes of metallic
nanostructures is general, the effective model thus provides
an efficient way to treat multimode interactions. We point out
that in the strong-coupling regime, this effective model is valid
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only when the detunings between the QE and higher modes of
MNP are large enough.

V. PHOTON STATISTICS CONTROL

In this section, we focus on the control of the photon
correlation g(2)(0) via multimode effects of the MNP. In
the following, the distance R between the QE and MNP is
generally 10 to 20 nm, which does not satisfy the dipole
approximation condition R > 3rm [37], so multimode effects
must be considered. To guarantee the convergence of the
steady-state results, at most 15 modes of the MNP are taken
into account, which represents the N → ∞ results.

We first tune the photon statistics of the scattered field by
changing the frequency of the incident light. In the following,
the QE frequency is set to ωx = 3.42 eV [case II in Fig. 1(b)].
By changing the frequency, we observe both bunching
[g(2)(0) > 1] and antibunching [g(2)(0) < 1] photon statistics
[Fig. 5(a)], which is the result of the coaction of all MNP
modes. For example, at frequency ω ≈ 3.421 eV, a typical
bunching effect is seen, whereas at ω ≈ 3.424 eV, a sharp
dip in g(2)(0) appears, indicating strong photon antibunching.
This antibunching character occurring in the bad-cavity limit
is fundamentally different from that in a traditional CQED
system, where the strong-coupling condition is necessary to
control the photon statistics [6–11]. From the interference term
[third term in Eq. (3)] caused by the high openness of the MNP
plotted in Fig. 5(b), we can see that the statistical destructive
interference leads to the sharp dip of g(2)(0).

For a fixed frequency of incident light, the quantum
statistics of the scattered light can be controlled at the
nanoscale. As the distance R decreases, the photon statistics
makes a continuous transition from antibunching to bunching
[Fig. 6(a)]. As shown in Fig. 6(b), the scattered intensity
increases initially and then decreases with the QE and MNP

FIG. 5. (Color online) (a) Convergent multimode results
(N = 15) for g(2)(0) calculated from the effective model for case II.
The quantum statistics of the scattered field can be controlled by
tuning the incident light frequency. (b) The sum of the first two terms
(blue dash-dotted curve) and the third interference term (red dotted
curve) in Eq. (3) for N = 15.

FIG. 6. (a) Second-order correlation g(2)(0) and (b) normalized
scattered intensity with respect to the distance R when the incident
light frequency is fixed at ω = 3.418 eV. The intensity in (b) is
normalized by the result of R → ∞. The other parameters are the
same as in Fig. 5.

getting closer. This intensity transition originates from the
competing effects of near-field enhancement and nonradiative
energy transfer from QE to MNP [38]. Compared with the
scattering intensity of R → ∞, enhanced scattered fields can
be obtained for both bunched and antibunched light.

Finally, the properties of the photon statistics are also
sensitive to the background permittivity εb. As indicated
by the red solid curve in Fig. 7, the photon statistics can
be switched from antibunching to bunching by increasing
the permittivity. The control mechanism here can also be
attributed to the interference induced by cavity openness.
Moreover, setting the incident frequency to the dip frequency
of g(2)(0) [ω � 3.424 eV; see Fig. 5(a)] provides a better
option to control the photon statistics. Recall that the refractive
index sensing in nanophotonics usually involves measuring

FIG. 7. (Color online) Second-order correlation function g(2)(0)
with respect to the dielectric constant εb of background for
ω = 3.422 eV (blue dash-dotted curve) and ω = 3.424 eV (red solid
curve). The εb dependence of g(2)(0) provides insight into refractive
index sensing. The other parameters are the same as in Fig. 5.
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a shift of the surface plasmon resonance peak [39–41]. We
emphasize that here the dependence of g(2)(0) on εb opens
an alternative promising way. For practical applications, one
prefers a strong signal from the coincidence measurement of
the scattered field. This can be obtained in two ways. The
first is increasing the scattered field intensity by using strong
excitation and larger MNP with larger scattering cross section.
The second way is improving the collection efficiency by using
an optical nanofiber [42]. A designed nanoantenna which leads
to directional emission can also help to boost the collection
efficiency [43].

VI. DISCUSSION AND SUMMARY

We now discuss the experimental feasibility of the hybrid
QE-MNP system. The QE can be a quantum dot [44],
ultracold atom [45,46], molecule [47], ion [48], etc. As an
example, a quantum dot coated with DNA and MNP can
self-assemble [49,50] into an individual quantum dot-DNA-
MNP complex. One can tune the distance between the QE and
MNP by using different numbers of DNA bases [51]. With
current developments in nanotechnology, scanning tunneling
microscopes and atomic force microscopes can also be used to
package the hybrid QE-MNP system [15]. The measurement of
the second-order correlation function g(2)(0) can be performed
by sending the scattered light to a Hanbury Brown–Twiss
interferometer [52,53].

In conclusion, we have theoretically demonstrated that the
hybrid QE-MNP system can execute nanoscale control of the
quantum statistics of the scattered light field. Different from
the conventional CQED methods, the control mechanism of
quantum statistics is based on the scattering fields interference
induced by high nanocavity openness. Moreover, a simple
effective single-mode model has been derived, where the
higher modes of the MNP modify the resonance frequency
and decay rates of QE. We have obtained both bunched and
antibunched fields by changing the frequency of the incident
light, the distance between the QE and MNP, or the background
dielectric constant. Thus, the dependence between the photon
statistics and the background permittivity provides a promising
path towards the refractive index sensing. The hybrid system
can also be used as a building block for future nanophotonic
quantum devices.
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APPENDIX A: DERIVATION OF COUPLING CONSTANTS

The Hamiltonian of the hybrid QE-MNP system in the
Schrödinger picture is given by

HS = �ωxσ
†σ +

N∑
n=1

�ωna
†
nan − μ(σ + σ †)ÊMNP

−E(t)χ (a1 + a
†
1) − μE(t)(σ + σ †), (A1)

where σ is the lowering operator of QE, and an is the
annihilation operator of the nth mode of MNP. ÊMNP =∑N

n=1 ξn(an + a
†
n) is the quantized electrical field of MNP

acting on the QE with amplitude ξn, and E(t) = E0(e−iωt +
eiωt ) represents the driven field. In addition, ωx and ωn are the
resonance frequency of the QE and the nth mode of MNP; μ

and χ denote the dipole moments of QE and MNP. Using the
rotating-wave approximation and introducing gn = μξn/�, the
Hamiltonian can be rewritten as

HS = �ωxσ
†σ +

N∑
n=1

�ωna
†
nan −

N∑
n=1

�gn(a†
nσ + anσ

†)

−E(t)χ (a1 + a
†
1) − μE(t)(σ + σ †). (A2)

After performing a unitary transformation U =
exp[−iω(σ †σ + ∑N

n=1 a
†
nan)t], we obtain the Hamiltonian H

in the interaction picture,

H = i�U̇ †U + U †HSU

= �(ωx − ω)σ †σ +
N∑

n=1

�(ωn − ω)a†
nan

−
N∑

n=1

�gn(anσ
† + a†

nσ ) − E0χ (a1 + a
†
1)

−μE0(σ + σ †). (A3)

Starting from the master equation in the main text [Eq. (2)],
the dynamics of the expectation values for arbitrary operator
F̂ can be given by

d

dt
〈F̂ 〉 = i

�
〈[H,F̂ ]〉 + γx

2
〈[σ †,F̂ ]σ + σ †[F̂ ,σ ]〉

+
N∑

n=1

γn

2
〈[a†

n,F̂ ]an + a†
n[F̂ ,an]〉, (A4)

with γx and γn denote the decay rates of the QE and nth mode
of MNP. Next we consider the quantum mechanical result of
the ÊMNP at the steady state. From Eq. (A4), the mean value
dynamics of the field operator an is found to be

d

dt
〈an〉 = −

[
i(ωn − ω) + γn

2

]
〈an〉 + ign〈σ 〉 + i

�
E0χδ1n,

(A5)

with δ1n being the Kronecker delta. By using d〈an〉/dt = 0,
the resulting steady-state expectation of an is

〈an〉ss = 1

i(ωn − ω) + γn

2

(
ign〈σ 〉 + i

�
E0χδ1n

)
. (A6)

Inserting the 〈an〉ss into the positive frequency component of
ÊMNP yields

〈Ê+
MNP〉ss =

N∑
n=1

ξn〈an〉ss

= 1

μ

[
ig1E0χ

i(ω1 − ω) + γ1

2

+
N∑

n=1

i�g2
n

i(ωn − ω) + γn

2

〈σ 〉
]
.

(A7)
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This is the quantum mechanical result of ÊMNP with unde-
termined coupling constants gn and dipole moment χ . From
a classical electromagnetic view, the electrical field at the
position of QE induced by the MNP polarization decomposes
into two: one is the near field of the MNP excited by the applied
field E(t) and the other originates from the feedback that QE
received from MNP. In other words, the MNP is polarized first
by the QE. The polarization field of the MNP then reacts on
the QE. Hence the classical electromagnetic result for E+

MNP
can be represented as [54,55]

E+
MNP = sαr3

m

R3

εm(ω) − εb

εm(ω) + 2εb

E0

+
N∑

n=1

sn

4πε0εb

εm(ω) − εb

εm(ω) + n+1
n

εb

r2n+1
m

R2n+4
μ〈σ 〉, (A8)

where rm and εm(ω) denote the MNP radius and dielectric
constant; R is the distance between QE and MNP; and sα

and sn are the polarization parameters, with sα = 2 (−1) and
sn = (n + 1)2 [n(n + 1)/2] for a radial (tangential) QE. The
resonance frequency ωn for the nth mode of MNP can be

determined from

Re[εm(ωn)] = −n + 1

n
εb. (A9)

Retaining just the first-order expansion of Re[εm(ω)] around
ωn for the nth mode in Eq. (A8), we obtain

E+
MNP = sαr3

m

R3

i3εbη1

i(ω1 − ω) + γ1

2

E0

+
N∑

n=1

sn

4πε0εb

i 2n+1
n

εbηn

i(ωn − ω) + γn

2

r2n+1
m

R2n+4
μ〈σ 〉, (A10)

where γn = 2ηnIm[εm(ωn)] is the decay rate of the nth mode
of MNP [21], with ηn = 1/ d

dω
Re[εm(ω)]|ω=ωn

. Comparing the
classical electromagnetic [Eq. (A10)] and quantum mechan-
ical [Eq. (A7)] results of E+

MNP yields expressions for gn

and χ :

gn = μ

Rn+2

√
2n + 1

n

snηnr
2n+1
m

4π�ε0
, (A11)

χ = εb

√
12πε0�η1r3

m. (A12)

APPENDIX B: GENERAL EQUATIONS OF SYSTEM DYNAMICS

In this section, we present the general equations for the expectation dynamics, from which we can calculate both the
dynamical and steady-state results of the populations and high-order correlation functions. Defining the general operator
Ô ≡ (a†

N )rN (aN )sN · · · (a†
n)rn (an)sn · · · (a†

1)r1 (a1)s1 , the dynamics of the system can be described by

d〈Ô〉
dt

= −
N∑

n=1

[
i(sn − rn)(ωn − ω) + (sn + rn)

γn

2

]
〈Ô〉

−
N∑

n=1

ignrn〈(a†
N )rN (aN )sN · · · (a†

n)rn−1(an)sn · · · (a†
1)r1 (a1)s1σ †〉

+
N∑

n=1

ignsn〈(a†
N )rN (aN )sN · · · (a†

n)rn(an)sn−1 · · · (a†
1)r1 (a1)s1σ 〉

− i

�
E0χr1〈(a†

N )rN (aN )sN · · · (a†
1)r1−1(a1)s1〉 + i

�
E0χs1〈(a†

N )rN (aN )sN · · · (a†
1)r1 (a1)s1−1〉, (B1)

d

dt
〈Ôσ †〉 = −

{
N∑

n=1

[
i(sn − rn)(ωn − ω) + (sn + rn)

γn

2

]
+ i(ω − ωx) + γx

2

}
〈Ôσ †〉

−
N∑

n=1

ign〈(a†
N )rN (aN )sN · · · (a†

n)rn+1(an)sn · · · (a†
1)r1 (a1)s1〉

+
N∑

n=1

i2gn〈(a†
N )rN (aN )sN · · · (a†

n)rn+1(an)sn · · · (a†
1)r1 (a1)s1σ †σ 〉 − i

�
μE0〈Ô〉

+
N∑

n=1

ignsn〈(a†
N )rN (aN )sN · · · (a†

n)rn (an)sn−1 · · · (a†
1)r1 (a1)s1σ †σ 〉 + i

�
2μE0〈Ôσ †σ 〉

− i

�
E0χr1〈(a†

N )rN (aN )sN · · · (a†
1)r1−1(a1)s1σ †〉 + i

�
E0χs1〈(a†

N )rN (aN )sN · · · (a†
1)r1 (a1)s1−1σ †〉, (B2)
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d

dt
〈Ôσ 〉 = −

{
N∑

n=1

[
i(sn − rn)(ωn − ω) + (sn + rn)

γn

2

]
+ i(ωx − ω) + γx

2

}
〈Ôσ 〉

+
N∑

n=1

ign〈(a†
N )rN (aN )sN · · · (a†

n)rn(an)sn+1 · · · (a†
1)r1 (a1)s1〉

−
N∑

n=1

i2gn〈(a†
N )rN (aN )sN · · · (a†

n)rn (an)sn+1 · · · (a†
1)r1 (a1)s1σ †σ 〉 + i

�
μE0〈Ô〉

−
N∑

n=1

ignrn〈(a†
N )rN (aN )sN · · · (a†

n)rn−1(an)sn · · · (a†
1)r1 (a1)s1σ †σ 〉 − i

�
2μE0〈Ôσ †σ 〉

− i

�
E0χr1〈(a†

N )rN (aN )sN · · · (a†
1)r1−1(a1)s1σ 〉 + i

�
E0χs1〈(a†

N )rN (aN )sN · · · (a†
1)r1 (a1)s1−1σ 〉, (B3)

d

dt
〈Ôσ †σ 〉 = −

{
N∑

n=1

[
i(sn − rn)(ωn − ω) + (sn + rn)

γn

2

]
+ γx

}
〈Ôσ †σ 〉

+
N∑

n=1

ign〈(a†
N )rN (aN )sN · · · (a†

n)rn (an)sn+1 · · · (a†
1)r1 (a1)s1σ †〉 + i

�
μE0〈Ôσ †〉

−
N∑

n=1

ign〈(a†
N )rN (aN )sN · · · (a†

n)rn+1(an)sn · · · (a†
1)r1 (a1)s1σ 〉 − i

�
μE0〈Ôσ 〉

− i

�
E0χr1〈(a†

N )rN (aN )sN · · · (a†
1)r1−1(a1)s1σ †σ 〉 + i

�
E0χs1〈(a†

N )rN (aN )sN · · · (a†
1)r1 (a1)s1−1σ †σ 〉. (B4)

Note that the expectations above are calculated in the rotating frame. The results in the Schrödinger picture can be obtained
as follows:

〈Ô〉S = 〈Ô〉ei
∑N

n=1(rn−sn)ωt , 〈Ôσ †〉S = 〈Ôσ †〉ei[1+∑N
n=1(rn−sn)]ωt ,

〈Ôσ 〉S = 〈Ôσ 〉ei[−1+∑N
n=1(rn−sn)]ωt , 〈Ôσ †σ 〉S = 〈Ôσ †σ 〉ei

∑N
n=1(rn−sn)ωt . (B5)

APPENDIX C: DERIVATION OF EFFECTIVE HAMILTONIAN

In this section, we derive the effective Hamiltonian by adiabatically eliminating the higher-mode operators. The derivation
here has referred the elimination of the excited state of a two-level atom in Ref. [56]. We begin with the Heisenberg equations of
motion for σ and an:

σ̇ = −
[
i(ωx − ω) + γx

2

]
σ −

N∑
n=1

ignσzan − iμE0σz, (C1a)

ȧn = −
[
i(ωn − ω) + γn

2

]
an + ignσ (n � 2), (C1b)

with σz = σ †σ − σσ †. These two equations can be formally integrated to give

σ (t) = σ (t0)e−[i(ωx−ω)+ γx
2 ](t−t0) + e−[i(ωx−ω)+ γx

2 ]t
∫ t

t0

dτ

[
−

N∑
n=1

ignσz(τ )an(τ ) − iμE0σz(τ )

]
e[i(ωx−ω)+ γx

2 ]τ , (C2a)

an(t) = an(t0)e−[i(ωn−ω)+ γn
2 ](t−t0) + e−[i(ωn−ω)+ γn

2 ]t
∫ t

t0

dτ ignσ (τ )e[i(ωn−ω)+ γn
2 ]τ (n � 2). (C2b)

By changing the integration variable, we rewrite the above two equations in the form

σ (t) = σ (t0)e−[i(ωx−ω)+ γx
2 ](t−t0) +

∫ t−t0

0
dτ

[
−

N∑
n=1

ignσz(t − τ )an(t − τ ) − iμE0σz(t − τ )

]
e−[i(ωx−ω)+ γx

2 ]τ , (C3a)

an(t) = an(t0)e−[i(ωn−ω)+ γn
2 ](t−t0) +

∫ t−t0

0
dτ ignσ (t − τ )e−[i(ωn−ω)+ γn

2 ]τ (n � 2). (C3b)
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We now replace t with t − τ in Eq. (C3a) and obtain

σ (t − τ ) = σ (t0)e−[i(ωx−ω)+ γx
2 ](t−τ−t0)

+
∫ t−τ−t0

0
dτ ′

[
−

N∑
n=1

ignσz(t − τ − τ ′)an(t − τ − τ ′) − iμE0σz(t − τ − τ ′)

]
e−[i(ωx−ω)+ γx

2 ]τ ′
. (C4)

As t0 in Eq. (C2a) is arbitrary, so Eq. (C4) holds for t0 = t . Setting t0 to t in the above expression yields

σ (t − τ ) = σ (t)e[i(ωx−ω)+ γx
2 ]τ

+
∫ 0

−τ

dτ ′
[

N∑
n=1

ignσz(t − τ − τ ′)an(t − τ − τ ′) + iμE0σz(t − τ − τ ′)

]
e−[i(ωx−ω)+ γx

2 ]τ ′
. (C5)

Substituting Eq. (C5) into Eq. (C3b) leads to the result

an(t) = an(t0)e−[i(ωn−ω)+ γn
2 ](t−t0) + ign

∫ t−t0

0
dτe−[i(ωn−ω)+ γn

2 ]τ

{
σ (t)e[i(ωx−ω)+ γx

2 ]τ

+
∫ 0

−τ

dτ ′e−[i(ωx−ω)+ γx
2 ]τ ′

[
N∑

n=1

ignσz(t − τ − τ ′)an(t − τ − τ ′) + iμE0σz(t − τ − τ ′)

]}
(n � 2). (C6)

Integrating the above equation by parts, we finally obtain

an(t) = an(t0)e−[i(ωn−ω)+ γn
2 ](t−t0) + ign

i(ωn − ωx) + (γn − γx)/2
σ (t) − ign

i(ωn − ωx) + (γn − γx)/2
e−[i(ωn−ωx )+(γn−γx )/2](t−t0)

×
{

σ (t) +
∫ 0

t0−t

dτ ′e−[i(ωx−ω)+γx/2](t−t0+τ ′)

[
N∑

n=1

ignσz(t0 − τ ′)an(t0 − τ ′) + iμE0σz(t0 − τ ′)

]}

+ ign

i(ωn − ωx) + (γn − γx)/2

∫ t−t0

0
dτe−[i(ωn−ωx )+(γn−γx )/2]τ d

dτ

{∫ 0

−τ

dτ ′e−[i(ωx−ω)+γx/2](τ+τ ′)

×
[

N∑
n=1

ignσz(t − τ − τ ′)an(t − τ − τ ′) + iμE0σz(t − τ − τ ′)

]}
(n � 2). (C7)

All of the above derivations are exact. As discussed in the main text, to obtain better control of the quantum statistics, the QE
transition frequency is set off resonance with the higher modes of MNP. Moreover, the coupling between the QE and MNP is
in the bad-cavity limit. As an approximation, we retain first-order terms with respect to gn

i(ωn−ωx )+(γn−γx )/2 only, and drop the fast
rotating and decay terms. We now arrive at

an(t) ≈ ign

i(ωn − ωx) + (γn − γx)/2
σ (t) (n � 2). (C8)

Inserting the above expression back into Eq. (C1a), we get

σ̇ = −
[
i(ωx − ω) + γx

2

]
σ − ig1σza1 −

N∑
n=2

ign

ign

i(ωn − ωx) + (γn − γx)/2
σzσ − iμE0σz

= −
{

i

[
ωx −

N∑
n=2

αn(ωn − ωx) − ω

]
+

[
γx

2
+ 1

2

N∑
n=2

αn(γn − γx)

]}
σ − ig1σza1 − iμE0σz, (C9)

where αn = g2
n

(ωn−ωx )2+(γn−γx )2/4 . We have used the relation σzσ = −σ in the above derivation. Combining Eq. (C9) with the
Heisenberg equation of a1,

ȧ1 = −
[
i(ω1 − ω) + γ1

2

]
a1 + ig1σ + iE0χ, (C10)

we then arrive at the effective Hamiltonian [Eq. (7)] and master equation [Eq. (8)] in the main text.
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